42 research outputs found

    The behavioural aspect of green technology investments: A general positive model in the context of heterogeneous agents

    Get PDF
    This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.eist.2016.03.002Studies report that firms do not invest in cost-effective green technologies. While economic barriers can explain parts of the gap, behavioural aspects cause further under-valuation. This could be partly due to systematic deviations of decision-making agents’ perceptions from normative benchmarks, and partly due to their diversity. This paper combines available behavioural knowledge into a simple model of technology adoption. Firms are modelled as heterogeneous agents with different behavioural responses. To quantify the gap, the model simulates their investment decisions from different theoretical perspectives. While relevant parameters are uncertain at the micro-level, using distributed agent perspectives provides a realistic representation of the macro adoption rate. The model is calibrated using audit data for proposed investments in energy efficient electric motors. The inclusion of behavioural factors reduces significantly expected adoption rates: from 81% using a normative optimisation perspective, down to 20% using a behavioural perspective. The effectiveness of various policies is tested.The authors acknowledge the German National Academic Foundation (FK) and the UK’s Engineering and Physical Sciences Research Council (JFM, fellowship no EP/K007254/1) for financial support

    Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C

    Get PDF
    Whole-economy scenarios for limiting global warming to 1.5C suggest that direct carbon emissions in the buildings sector should decrease to almost zero by 2050, but leave unanswered the question how this could be achieved by real-world policies. We take a modelling-based approach for simulating which policy measures could induce an almost-complete decarbonisation of residential heating, the by far largest source of direct emissions in residential buildings. Under which assumptions is it possible, and how long would it take? Policy effectiveness highly depends on behavioural decision- making by households, especially in a context of deep decarbonisation and rapid transformation. We therefore use the non-equilibrium bottom-up model FTT:Heat to simulate policies for a transition towards low-carbon heating in a context of inertia and bounded rationality, focusing on the uptake of heating technologies. Results indicate that the near-zero decarbonisation is achievable by 2050, but requires substantial policy efforts. Policy mixes are projected to be more effective and robust for driving the market of efficient low-carbon technologies, compared to the reliance on a carbon tax as the only policy instrument. In combination with subsidies for renewables, near-complete decarbonisation could be achieved with a residential carbon tax of 50-200Euro/tCO2. The policy-induced technology transition would increase average heating costs faced by households initially, but could also lead to cost reductions in most world regions in the medium term. Model projections illustrate the uncertainty that is attached to household behaviour for prematurely replacing heating systems

    EU climate and energy policy beyond 2020: are additional targets and instruments for renewables economically reasonable?

    Get PDF
    The European Council has proposed to stick to a more ambitious GHG target but to scrap a binding RES target for the post-2020 period. This is in line with many existing assessments which demonstrate that additional RES policies impair the cost-effectiveness of addressing a single CO2 externality, and should therefore be abolished. Our analysis explores to what extent this reasoning holds in a secondbest setting with multiple externalities related to fossil and nuclear power generation and policy constraints. In this context, an additional RES policy may help to address externalities for which firstbest policy responses are not available. We use a fully integrated combination of two separate models the top-down, global macro-economic model E3MG and the bottom-up, global electricity sector model FTT:Power – to test this hypothesis. Our quantitative analysis confirms that pursuing an ambitious RES target may mitigate nuclear risks and at least partly also negative non-carbon externalities associated with the production, import and use of fossil fuels. In addition, we demonstrate that an additional RES target does not necessarily impair GDP and other macro-economic measures if rigid assumptions of purely rational behaviour of market participants and perfect market clearing are relaxed. Overall, our analysis thus demonstrates that RES policies implemented in addition to GHG policies are not per se welfare decreasing. There are plausible settings in which an additional RES policy may outperform a single GHG/ETS strategy. Due to the fact, however, that i) policies may have a multiplicity of impacts, ii) the size of these impacts is subject to uncertainties and iii) their valuation is contingent on individual preferences, an unambiguous, “objective” economic assessment is impossible. Thus, the eventual decision on the optimal choice and design of climate and energy policies can only be taken politically

    The momentum of the solar energy transition

    Get PDF
    Decarbonisation plans across the globe require zero-carbon energy sources to be widely deployed by 2050 or 2060. Solar energy is the most widely available energy resource on Earth, and its economic attractiveness is improving fast in a cycle of increasing investments. Here we use data-driven conditional technology and economic forecasting modelling to establish which zero carbon power sources could become dominant worldwide. We find that, due to technological trajectories set in motion by past policy, a global irreversible solar tipping point may have passed where solar energy gradually comes to dominate global electricity markets, without any further climate policies. Uncertainties arise, however, over grid stability in a renewables-dominated power system, the availability of sufficient finance in underdeveloped economies, the capacity of supply chains and political resistance from regions that lose employment. Policies resolving these barriers may be more effective than price instruments to accelerate the transition to clean energy

    Net emission reductions from electric cars and heat pumps in 59 world regions over time

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Data availability: The data that support the findings of this study are available from the corresponding authors on reasonable request.Code availability: The computer code used to generate results that are reported in this study are available from the corresponding authors on reasonable request.Electrification of passenger road transport and household heating features prominently in current and planned policy frameworks to achieve greenhouse gas emissions reduction targets. However, since electricity generation involves using fossil fuels, it is not established where and when the replacement of fossil fuel-based technologies by1 electric cars and heat pumps can effectively reduce overall emissions. Could electrification policy backfire by promoting their diffusion before electricity is decarbonised? Here, we analyse current and future emissions trade-offs in 59 world regions with heterogeneous households, by combining forward-looking integrated assessment model simulations with bottom-up life-cycle assessment. We show that already under current carbon intensities of electricity generation, electric cars and heat pumps are less emission-intensive than fossil fuel-based alternatives in 53 world regions, representing 95% of global transport and heating demand. Even if future end19 use electrification is not matched by rapid power sector decarbonisation, it likely avoids emissions in world regions representing 94% of global demand.Engineering and Physical Sciences Research Council (EPSRC)Newton FundEuropean Research Council (ERC)European Union Horizon 2020European Commissio

    Quantum oscillations near the metamagnetic transition in Sr₃Ru₂O₇

    Get PDF
    We report a detailed investigation of quantum oscillations in Sr₃Ru₂O₇, observed inductively (the de Haas--van Alphen effect) and thermally (the magnetocaloric effect). Working at fields from 3 to 18 T allowed us to straddle the metamagnetic transition region and probe the low- and high-field Fermi liquids. The observed frequencies are strongly field dependent in the vicinity of the metamagnetic transition, and there is evidence for magnetic breakdown. We also present the results of a comprehensive rotation study. The most surprising result concerns the field dependence of the measured quasiparticle masses. Contrary to conclusions previously drawn by some of us as a result of a study performed with a much poorer signal-to-noise ratio, none of the five Fermi-surface branches for which we have good field-dependent data gives evidence for a strong-field dependence of the mass. The implications of these experimental findings are discussed.Instituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models

    Get PDF
    Abstract Integrated assessment models (IAMs) have emerged as key tools for building and assessing long term climate mitigation scenarios. Due to their central role in the recent IPCC assessments, and international climate policy analyses more generally, and the high uncertainties related to future projections, IAMs have been critically assessed by scholars from different fields receiving various critiques ranging from adequacy of their methods to how their results are used and communicated. Although IAMs are conceptually diverse and evolved in very different directions, they tend to be criticised under the umbrella of ‘IAMs’. Here we first briefly summarise the IAM landscape and how models differ from each other. We then proceed to discuss six prominent critiques emerging from the recent literature, reflect and respond to them in the light of IAM diversity and ongoing work and suggest ways forward. The six critiques relate to (a) representation of heterogeneous actors in the models, (b) modelling of technology diffusion and dynamics, (c) representation of capital markets, (d) energy-economy feedbacks, (e) policy scenarios, and (f) interpretation and use of model results.</jats:p
    corecore